Publications
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
List of Publications

1. X. Lu, C. Shang, L. Li, R. Chen, B. Fu, X. Xu, D. H. Zhang, Unexpected steric hindrance failure in the gas phase F+(CH3)3CI SN2 reaction, Nat. Commun., 13 (2022) 4427.

2. X. Xu, J. Chen, X. Lu, W. Fang, S. Liu d D. H. Zhang, Strong non-Arrhenius behavior at low temperatures in the OH+HCl/H2O+Cl reaction due to resonance induced quantum tunneling, Chem. Sci., 13 (2022) 79557961.

3. X. Lu, L. Li, X. Zhang, B. Fu, X. Xu, and D. H. Zhang, Dynamical Effects of SN2 Reactivity Suppression by Microsolvation: Dynamics Simulations of the F(H2O)+CH3I Reaction on a 21- Dimensional Potential Energy Surface, J. Phys. Chem. Lett., 13 (2022) 5253-5259.

4. H. Shi, T. Liu, Y. Fu, X. Lu, B. Fu, and D. H. Zhang, Quantum Effects in the Dissociative Chemisorption of N2 on Fe(111): Full-Dimensional Quantum Dynamics and Quasi-Classical Trajectory Study,J. Phys. Chem. C.,125 (2021)23105-23114.

5. C. Shang, J. Chen, X. Xu, S. Liu, D. H. Zhang, State-to-State Quantum Dynamical Study of H+Br2→HBr+Br Reactiony, Chin. J. Chem. Phys.,34(2021) 949-956.

6. Z. Yin, B. J. Braams, B. Fu, and D. H. Zhang, Neural network representation of three-state quasi-diabatic Hamiltonians based on the transformation properties from the valence bond model: three singlet states of H3+,J. Chem. Theory Comput., 17 (2021)1678-1690.

7. S. Liu, X. Zhang, J. Chen, and D. H. Zhang, Feshbach Resonances in the Vibrationally Excited F+HOD(vOH/vOD=1) Reaction Due to Chemical Bond Softening,J. Phys. Chem. Lett.12 (2021)6090-6094.

8. C. Shang, J. Chen, X. Xu, S. Liu, L. Li, L. Duo, and D. H. Zhang, quantum wave packet study of the H+Br2→H+HBr reaction on a new ab initio potential energy surface, J. Phys. Chem. A125 (2021)7289-7296.

9. S. Jiang, M. Su, S. Yang, C.Wang, Q.Huang, G.Li, H.Xie, J.Yang, G.Wu, W.Zhang, Z.Zhang, J.Kuo, Z. Liu, D.H. Zhang, X.Yang, and L.Jiang,Vibrational Signature of Dynamic Coupling of a Strong Hydrogen Bond,J. Phys. Chem. Lett.,12 (2021)2259-2265.

10. Y. Fu, Y. Bai, Y. Han, B. Fu, and D. H. Zhang, Double-Roaming Dynamics in the H+C2H2→H2+C2H Reaction:Acetylene-Facilitated Roaming and Vinylidene-Facilitated Roaming,J. Phys. Chem. Lett., 12 (2021)4211-4217.

11. Y. Fu, X. Lu, Y. Han, B. Fu, and D. H. Zhang, Supercollisions of fast H-atom with ethylene on an accurate full-dimensional potential energy surface,J. Chem. Phys., 154 (2021) 024302.

12. J. Huang, B. K. Kendrick, and D. H. Zhang, Mechanistic Insights into Ultracold Chemical Reactions under the Control of the Geometric Phase,J. Phys. Chem. Lett., 12 (2021) 2160-2165.

13. Z. Yin, B. J. Braams, Y. Guan, B. Fu, and D. H. Zhang, A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H3,Phys. Chem. Chem. Phys.,239 (2021)1082-1091.

14. W. Chen, R. Wang, D. Yuan, H. Zhao, C. Luo, Y. Tan, S. Li, D. H. Zhang, X. Wang, Z. Sun, X. Yang, Quantum interference between spin-orbit split partial waves in the F+HD→HF+D reaction, Science,371 (2021) 936–940.

15. 商辰尧, 张东辉, 基本不变量神经网络解析梯度方法的研究,Chemical Journal of Chinese Universities (高等学校化学学报), 42 (2021) 2146-2154.

16. R. Chen, H. Su, D. Liu, R. Huang, X. Meng, X. Cui, Z. Tian, D. H. Zhang, D. H. Deng, Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide, Angew. Chem. Int. Edit., 59 (2020)154-160.

17. X. Zhang, L. Li, J. Chen, S. Liu,D. H. Zhang, Feshbach resonances in the F+H2O→HF+OH reaction,Nat. Commun.,11 (2020)223-1~223-5.

18. Y. Xie, H. Zhao, Y. Wang, Y. Huang, T. Wang, X. Xu, C. Xiao, Z. Sun, D. H. Zhang, X. Yang, Quantum interference in H+HD→H2+D betweendirect abstraction and roaming insertion pathways,Science, 368(2020) 767-771.

19. Z. Chen, J. Chen, R. Chen, T. Xie, X. Wang, S. Liu, G. Wu,D.Dai, X.Yang,and D.H. Zhang,Reactivity oscillation in the heavy–light–heavy Cl+CH4 reaction,Proc. Nat. Acad. Sci. USA,117 (2020) 9202-9207.

20. Y.Hong, Z. Yin, Y. Guan, Z.Zhang, B.Fu and D.H. Zhang. Exclusive Neural Network Representation of the Quasi-Diabatic Hamiltonians Including Conical Intersections. J. Phys. Chem. Lett.,11 (2020) 7552-7558.

21. R.Chen, K.Shao,B. Fu, and D.H. Zhang,Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms,J. Chem. Phys., 152 (2020) 204307.

22. J. Huang, J. Chen, S. Liu, D. H. Zhang,Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Four-Atom Reactions, Journal of Physical Chemistry Letters,11 (2020) 8560-8564.

23. L. Li, B. Fu, X. Yang, D. H. Zhang, A global ab initio potential energy surface and dynamics of the proton-transfer reaction: OH-+D2→HOD+D-, Phys. Chem. Chem. Phys.,22 (2020) 8203-8211.

24. Y. Fu, X. Lu, Y. Han, B. Fu, D. H. Zhang and J. M. Bowman, Collision-induced and complex-mediated roaming dynamics in the H+C2H4→H2+C2H3reaction, Chemical Science,11 (2020) 2148-2154.

25. J. Huang, and D. H. Zhang, An efficient way to incorporate the geometric phase in the time-dependent wave packet calculations in a diabatic representation,J. Chem. Phys.,153 (2020) 141102-1-141102-5.

26. Z. Zhang, F. Gatti, and D. H. Zhang, Full-dimensional quantum mechanical calculations of the reaction probability of the H+CH4 reaction based on a mixed Jacobi and Radau description, J. Chem. Phys.,152 (2020) 201101.

27. X. Lu, B. Fu, and D. H. Zhang, Dynamics and kinetics of the OH+HO2→H2O+O2(1△g) reaction on a global full-dimensional singlet-state potential energy surface, Phys. Chem. Chem. Phys.,22 (2020) 26330.

28. T. Liu, B. Fu, D. H. Zhang, A comparison study of the six-dimensional quantum dynamics for the dissociative chemisorption of HCl on different facets of Ag,Chem.Phys.Lett.,761(2020) 138078.

29. B. Zhang, S. Yang, Q. Huang, S. Jiang, R. Chen, X. Yang, D. H. Zhang, Z. Zhang, J. Kuo, and L. Jiang, Deconstructing Vibrational Motions on the Potential Energy Surfaces of Hydrogen-Bonded Complexes,CCS Chem., 2 (2020)829-835.

30. B. Zhang, Y. Yu, Z. Zhang, Y.Zhang, S.Jiang, Q.Li, S.Yang, H. Hu, W. Zhang, D. Dai, G. Wu, J. Li, D. H. Zhang, X. Yang, and L. Jiang,Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser,J. Phys. Chem. Lett.,11 (2020) 851-855.

31. B. Zhang, Y. Yu, Y. Zhang, S. J, Q. Li, H. Hu, G. Li, Z. Zhao, C. Wang, H. Xie, W. Zhang, D. Dai, G. Wu, D. H. Zhang , L. Jiang, J. Li,X.Yang,Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer,Proc. Nat. Acad. Sci. USA,117 (2020) 15423-15428.

32. X. Xu, J. Chen, S. Liu, D. H. Zhang, An Ab Initio-Based Global Potential Energy Surface for the SH3 System and Full-Dimensional State-To-State Quantum Dynamics Study for the H2+HS→H2S+H Reaction, J. Comput. Chem.,40 (2019)1151-1160.

33. X. Lu, X. Wang, B. Fu, and D. H. Zhang, Theoretical Investigations of Rate Coefficients of H+H2O2→OH+H2O on a Full-Dimensional Potential Energy Surface, J. Phys. Chem. A,123 (2019) 3969-3976.

34. R. A. Vargas-Hernández, Y. Guan, D. H. Zhang, and R. V. Krems, Bayesian optimization for the inverse scattering problem in quantum reaction dynamics, New J. Phys.,21 (2019) 022001.

35. Z. Zhang, F. Gatti, and D. H. Zhang, Full dimensional quantum mechanical calculations of the reaction probability of the H+NH3 collision based on a mixed Jacobi and Radau description, J. Chem. Phys.,150 (2019) 204301.

36. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional potential energy surfaces for the dissociative chemisorption of HCl on rigid Ag(100) and Ag(110) surfaces, J. Chem. Phys.,151 (2019) 144707.

37. Y. Guan, D. H. Zhang, H. Guo, and D. R. Yarkony, Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2,2A0 states of LiFH,Phys. Chem. Chem. Phys.,21(2019) 14205.

38. Z. Yin, Y. Guan, B. Fu, and D. H. Zhang, Two-state diabatic potential energy surfaces of ClH2 based on nonadiabatic couplings with neural networks, Phys. Chem. Chem. Phys.,21 (2019) 20372.

39. X. Cui, H. Su, R. Chen, J. Xiao, M. Zhang, D. Ma , D. Deng, D. H. Zhang, Z. Tian, and X. Bao, Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production, Nature communications,10(2019) 86-1~86-8.

40. B. Fu, J. Chen, T. Liu, K. Shao, D. H. Zhang, Highly Accurately Fitted Potential Energy Surfaces for Polyatomic Reactive Systems, Acta Phys. -Chim. Sin.35 (2019) 145-157.

41. Q. Wang, R. Chen, J. Lou, D. H. Zhang, Y. Zhou, and Z. Yu, Highly Regioselective C−H Alkylation of Alkenes Through an Aryl to Vinyl 1,4-Palladium Migration/C−C Cleavage Cascade, ACS Catal. 9 (2019)11669-11675.

42. T.Yang, L. Huang, C. Xiao, J. Chen, T. Wang, D. Dai, F. Lique, M. H. Alexander, Z. Sun, D. H. Zhang, X. Yang,and D. M. Neumark, Enhanced reactivity of fluorine with para-hydrogen in cold interstellar clouds by resonance-induced quantum tunneling, Nature Chemistry,11 (2019)744-749.

43. B. Fu, D. H. Zhang, Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions, J. Chem. Theory. Comput. 14 (2018) 2289-2303.

44. Y. Guan, S. Yang, D. H. Zhang, Application of Clustering Algorithms to Partitioning Configuration Space in Fitting Reactive Potential Energy Surfaces, J. Phys. Chem. A,122 (2018) 3140−3147.

45. Z. Zhao, J. Chen, Z. Zhang, D. H. Zhang, X. Wang, T. Carrington, Jr., and F. Gatti, Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem, J. Chem. Phys.148(2018) 074113.

46. Y. Guan, S. Yang, and D. H. Zhang, Construction of reactive potential energy surfaces with Gaussian process regression: active data selection, molecular physics,116 (2018) 823-834.

47. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional potential energy surfaces of the dissociative chemisorption of HCl on Ag(111) with three density functionals, J. Chem. Phys.149 (2018) 054702.

48. J. Huang, S. Liu, and D. H. Zhang, Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules, Physical review letters120 (2018) 143401.

49. T. Liu, J. Chen, Z. Zhang, X. Shen, B. Fu, and D. H. Zhang, Water dissociating on rigid Ni(100): A quantum dynamics study on a full- dimensional potential energy surface, J. Chem. Phys.148 (2018) 144705.

50. T. Liu, B. Fu, and D. H. Zhang, Six-dimensional quantum dynamics for the dissociative chemisorption of HCl on rigid Ag(111) on three potential energy surfaces with different density functionals,J. Chem. Phys.149 (2018) 174702.

51. P. Sun, Z. Zhang, J. Chen, S. Liu, and D. H. Zhang, Well converged quantum rate constants for the H2+OH→H2O+H reaction via transition state wave packet, J. Chem. Phys.149 (2018) 064303.

52. P.Sun, J.Chen, S.Liu, D.H. Zhang, Accurate integral cross sections for the H+CO2→OH+CO reaction,ChemicalPhysicsLetters,706 (2018) 675-679.

53. D. Yang, X. Hu, D. H. Zhang, and D. Xie, An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision, J. Chem. Phys.148 (2018) 084101.

54. D. Yang, X. Hu, D. H. Zhang, and D. Xie, An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision,J. Chem. Phys.148 (2018)129901.

55. J. Chen, X. Xu, S. Liu, and D. H. Zhang, A neural network potential energy surface for the F+CH4 reaction including multiple channels based on coupled cluster theory, Phys. Chem. Chem. Phys.,20 (2018) 9090-9100.

56. D. Yuan, S. Yu, W. Chen, J. Sang, C. Luo, T. Wang, X. Xu, P. Casavecchia, X. Wang, Z. Sun, D. H. Zhang, and X. Yang,Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction, Nature Chemistry,10 (2018) 653-658.

57. D. Yuan, Y. Guan, W. Chen, H. Zhao, S. Yu, C. Luo, Y. Tan, T. Xie, X. Wang, Z. Sun, D. H. Zhang, X. Yang, Observation of the geometric phase effect in the H+HD→H2+D reaction. Science, 362 (2018) 1289-1293.

58. T. Wang, T. Yang, C. Xiao,* Z. Sun,* D. H. Zhang,* X. Yang,* M. L. Weichman*, and D. M. Neumark*, Dynamical resonances in chemical reactions, Chem. Soc. Rev.,47 (2018) 6744.

59. X.Lu, Q.Y. Meng, X. Wang, B.Fu, D.H. Zhang, Rate coefficients of the H+H2O2→H2+HO2 reaction on an accurate fundamental invariant-neural network potential energy surface,J. Chem. Phys.149 (2018)174303.

60. X.Lu, K.Shao, B.Fu, X.Wang, D.H.Zhang, An accurate full-dimensional potential energy surface and quasiclassical trajectory dynamics of the H+H2O2 two-channel reaction,Phys. Chem. Chem. Phys.,20 (2018) 23095-23105.

61. X.Shen, D.H. Zhang, Recent advances in quantum dynamics studies of gas-surface reactions, Advances in chemical physics,163 (2018)77-116.

62. Z. Ren, Z. Sun, D. H. Zhang, X. Yang, A review of dynamical resonances in A+BC chemical reactions, Rep. Prog. Phys.,80 (2017) 026401-1~026401-25.

63. Z. Zhao, Z, Zhang, S. Liu, D. H. Zhang, Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism, Nat. Commun.,8(2017) 14506-1~14506-7.

64. X. Shen, Z. Zhang, and D. H. Zhang, Methane dissociation on Ni(111): A seven-dimensional to nine-dimensional quantum dynamics study, J. Chem. Phys.147 (2017) 024702-1~024702-8.

65. Z. Zhao, S. Liu, D. H. Zhang,Differential Cross Sections for the H+D2O→HD+OD Reaction: a Full Dimensional State-to-State Quantum Dynamics Study, Chinese journal of chemical physics,30(2017)16-24.

66. B. Fu, X. Shan, D. H. Zhang and David C. Clary, Recent advances in quantum scattering calculations on polyatomic bimolecular reactions, Chem. Soc. Rev.,46 (2017) 7625-7649.

67. P. Sun, J. Chen, S. Liu, D. H. Zhang, A full-dimensional time-dependent wave packet study of the H+CO2→OH+CO reaction, Chemical Physics Letters,683 (2017) 352–356.

68. Y. Guan, B. Fu, and D. H. Zhang, Construction of diabatic energy surfaces for LiFH with artificial, neural networks, J. Chem. Phys., 147 (2017) 224307.

69. T. Liu, B. Fu and D. H. Zhang, An approximate full-dimensional quantum dynamics study of the mode specificity in the dissociative chemisorption of D2O on rigid Cu(111), Phys. Chem. Chem. Phys., 19 (2017) 11960-11967.

70. J. Chen, N. Su, X. Xu , and D. H. Zhang, Accurate Potential Energy Surfaces for Hydrogen Abstraction Reactions: A Benchmark Study on the XYG3 Doubly Hybrid Density Functional, Journal of Computational Chemistry, 38 (2017) 2326-2334.

71. D. Zhang, J. Yang, Z. Chen, R. Chen, B. Jiang, D. Dai, G. Wu, D. H. Zhang, and X. Yang, CH stretching excitation promotes its cleavage in the F+CHD3(v1=1)→HF+CD3 reaction at low collision energies, Phys. Chem. Chem. Phys.,19 (2017) 13070-13074.

72. T. Liu, B. Fu, and D. H. Zhang, HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new potential energy surface based on the RPBE functional, J. Chem. Phys.146 (2017) 164706-1~164706-9.

73. L. Chen, K. Shao, J. Chen, M. Yang, D. H. Zhang,Full-dimensional quantum dynamics study of the H2+C2H→H+C2H2reaction on an ab initio potential energy surface,J. Chem. Phys.,144 (2016) 194309-1~194309-7.

74. T. Liu, Z. Zhang, B. Fu, X. Yang, and D. H. Zhang, A seven-dimensional quantum dynamics study of the dissociative chemisorption of H2O on Cu(111): effects of azimuthal angles and azimuthal angle averaging, Chem. Sci.,7 (2016) 1840-1845.

75. D. H. Zhang, H. Guo, Recent advances in quantum dynamics of bimolecular reactions, Annu. Rev. Phys. Chem.,67 (2016) 135-158.

76. Z. Zhang, T. Liu, B. Fu, X. Yang, D. H. Zhang, First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111), Nat. Commun.,7 (2016) 11953-1~11953-7.

77. T. Liu, Z. Zhang, J. Chen, B. Fu, D. H. Zhang, Mode specificity of the dissociative chemisorption of HOD on rigid Cu(111): an approximate full- dimensional quantum dynamics study, Phys. Chem. Chem. Phys.,18 (2016) 26358-23624.

78. T. Liu, Z. Zhang, B. Fu, X. Yang, D. H. Zhang, Mode specificity for the dissociative chemisorption of H2O on Cu(111): a quantum dynamics study on an accurately fitted potential energy surface, Phys. Chem. Chem. Phys.,18(2016) 8537-8544.

79. Z. Zhao, S. Liu, D. H. Zhang, State-to-state differential cross sections for a four-atom reaction: H2+OH→H2O+H in full dimensions, J. Chem. Phys.,145 (2016) 134301-1~134301-8.

80. K. Shao, J. Chen, Z. Zhao, D. H. Zhang, Communication: Fitting potential energy surfaces with fundamental invariant neural Network, J. Chem. Phys.,145(2016) 071101-1~071101-5.

81. Z. Zhao, J. Chen, Z. Zhang, D. H. Zhang, David Lauvergnat, and Fabien Gatti, Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Applications to methane and fluoromethane, J. Chem. Phys.,144 (2016) 204302-1~204302-10.

82. Q. Meng, J. Chen, D. H. Zhang, Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane, J. Chem. Phys.,144 (2016) 154312-1~154312-7.

83. X. Shen, Z. Zhang, D. H. Zhang, Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site, J. Chem. Phys.,144(2016) 101101-1~101101-4.

84. S. Liu, D. H. Zhang, A local mode picture for H atom reaction with vibrationally excited H2O: a full dimensional state-to-state quantum dynamics investigation, Chem. Sci.,7 (2016) 261-265.

85. X. Shen, Z. Zhang, D. H. Zhang, Eight-dimensional quantum dynamics study of CH4 and CD4 dissociation on Ni(100) surface, J. Phys. Chem. C,120 (2016) 20199-20205.

86. Q. Meng, K. M. Hickson, K. Shao, J. C. Loisonc, D. H. Zhang, Theoretical and experimental investigations of rate coefficients of O(1D)+CH4 at low temperature, Phys. Chem. Chem. Phys., 18 (2016) 29286-29292.

87. N. Su, J. Chen, X. Xu, D. H. Zhang, Quantum reaction dynamics based on a new generation density functional and neural network potential energy surfaces, Acta Phys. -Chim. Sin.(物理化学学报),32 (2016) 119-130.

88. T. Yang, J. Chen, L. Huang, T. Wang, C. Xiao, Z. Sun, D. Dai, X. Yang, D. H. Zhang,Extremely short-lived reaction resonances inCl+HD(v=1)→DCl+Hdue to chemical bond softening,Science,347(2015) 60-63.

89. J. Chen, Z. Sun, D. H. Zhang, An accurate potential energy surface for the F+H2→HF+H reaction by the coupled-cluster method,J. Chem. Phys.,142 (2015) 024303-1~024303-11.

90. F. Bina, D. H. Zhang,A full-dimensional quantum dynamics study of the mode specificity in the H+HOD abstraction reaction., J. Chem. Phys., 142 (2015) 064314-1~064314-9.

91. X. Shen, J. Chen, Z. Zhang, K. Shao, D. H. Zhang, Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method,J. Chem. Phys.,143 (2015) 144701-1~144701-10.

92. X. Shen, Z. Zhang, D. H. Zhang, CH4 dissociation on Ni(111): a quantum dynamics study of lattice thermal motion, Phys. Chem. Chem. Phys.,17 (2015) 25499-25504.

93. N. Q. Su, J. Chen, Z. Sun, D. H. Zhang, X. Xu, H+H2 quantum dynamics using potential energy surfaces based on the XYG3 type of doubly hybrid density functionals: Validation of the density functionals,J. Chem. Phys.,142 (2015) 084107-1~084107-9.

94. J. Li, J. Chen, Z. Zhao, D. Xie, D. H. Zhang, H. Guo, A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H+CH4 system,J. Chem. Phys.,142(2015) 204302-1~204302-6.

95. Q. Meng, J. Chen, D. H. Zhang, Communication: Rate coefficients of the H+CH4→H2+CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface,J. Chem. Phys.,143(2015) 101102-1~101102-5.

96. K. Shao, B. Fu, D. H. Zhang, A global full-dimensional potential energy surface and quasiclassical trajectory study of the O(1D) + CH4 multichannel reaction, Phys. Chem. Chem. Phys.,17 (2015) 24098-24107.

97. K. Shao, B. Fu, D. H. Zhang, Quasiclassical trajectory study of the reaction of CD4 with O(1D), Chin. J. Chem. Phys.,28 (2015) 403-408.

98. Z. Sun and D. H. Zhang, Development of the potential energy surface and current stage of the quantum dynamics studies of the F+H2/HD reaction, Int. J. Quantum Chem.,115 (2015) 689-699.

99. T. Yang, L. Huang, T. Wang, C. Xiao, Y. Xie, Z. Sun, D. Dai, M. Chen, D. H. Zhang, and X. Yang, Effect of reagent vibrational excitation on the dynamics of F+H2(v=1, j=0)→HF(v′, j′)+H reaction, J. Phys. Chem. A,119 (2015) 12284-12290.

100. T. Yang, L. Huang, Y. Xie, T. Wang, C. Xiao, Z. Sun, D. Dai, M. Chen, D. H. Zhang, X. Yang, Effect of reagent rotational excitation on dynamics of F+H2→HF+H, Chin. J. Chem. Phys.,28 (2015) 471-475.

101. Z. Zhang, J. Chen, M. Yang, and D. H. Zhang, Time-dependent wave packet study of the H2+CH3→H+CH4 reaction, J. Phys. Chem. A,119 (2015) 12480-12484.

102. J. Yang, D. Zhang, Z. Chen, F. Blauert, B. Jiang, D. Dai, G. Wu, D. H. Zhang, and X. Yang, Effect of CH stretching excitation on the reaction dynamics of F+CHD3→DF+CHD2,J. Chem. Phys.,143 (2015) 044316-1~ 044316-6.

103. J. Chen, D. H. Zhang, Construction of molecular reactive potential energy surfaces based on neural networks, Sci. Sin. Chim. (中国科学),45 (2015) 1241-1253.

104. T. Liu,B. Fu,and D. H. Zhang, Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks. Sci. China Chem.,57 (2014) 147-155.

105. T. Liu, B. Fu, and Dong H. Zhang, Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface,J. Chem. Phys.,140 (2014) 144701-1~144701-7.

106. S. Liu, J. Chen, B. Fu, D. H. Zhang, State‑to‑state quantum versus classical dynamics study of the OH+CO→H+CO2 reaction in full dimensions (J = 0): checking the validity of the quasi‑classical trajectory method, Theor. Chem. Acc.,133 (2014) 1558-1~1558-9.

107. Z. Zhang, J. Chen, S. Liu, D. H. Zhang, Accuracy of the centrifugal sudden approximation in the H+CHD3→H2+CD3 reaction, J. Chem. Phys.,140(2014) 224304-1~224304-7.

108. Z. Zhang, D. H. Zhang, Effects of reagent rotational excitation on the H+CHD3→H2+CD3 reaction: A seven dimensional time-dependent wave packet study,J. Chem. Phys.,141 (2014) 114309-1~114309-8.

109. T. Liu, B. Fu, D. H. Zhang, Validity of the site-averaging approximation for modeling the dissociative chemisorption of H2 on Cu(111) surface: A quantum dynamics study on two potential energy surfaces,J. Chem. Phys.,141(2014) 194302-1~194302-8.

110. Xin Xu, Jun Chen, Dong H. Zhang, Global potential energy surface for the H+CH4↔H2+CH3 reaction using neural networks, Chin. J. Chem. Phys.,27 (2014) 373-379.

111. Y. Zhou, D. H. Zhang, Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces,J. Chem. Phys.,141 (2014) 194307-1~194307-8.

112. K. Werner, D. H. Zhang, Communication: Separable potential energy surfaces from multiplicative artificial neural networks,J. Chem. Phys.,141 (2014) 021101-1~021101-4.

113. J. Yang, K. Shao, D. Zhang, Q. Shuai, B. Fu, D. H. Zhang, X. Yang, Trapped abstraction in the O(1D)+CHD3→OH+CD3 reaction, J. Phys. Chem. Lett.,5 (2014) 3106-3111.

114. T. Wang, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, D. H. Zhang, Isotope-dependent rotational states distributions enhanced by dynamic resonance states: A comparison study of the F+HD→HF(VHF=2)+D and F+H2→HF(VHF=2)+H Reaction, J. Phys. Chem. Lett., 5(2014) 3049-3055.

115. W. Li, D. H. Zhang, Z. Sun, Efficient fourth-order split operator for solving the triatomic reactive Schrodinger equation in the time-dependent wavepacket approach,J. Phys. Chem. A,118 (2014) 9801-9810.

116. J. Yang, D. Zhang, B. Jiang, D. Dai, G. Wu, D. H. Zhang, X. Yang, How is C-H vibrational energy redistributed in F+CHD3(v1=1)→HF+CD3,J. Phys. Chem. Lett.,5(2014) 1790-1794.

117. B. Zhao, D. H. Zhang, S.-Y. Lee, Z. Sun, Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method,J. Chem. Phys.,140(2014) 164108-1~164108-8.

118. H. Pan, J. Yang, Q. Shuai, D. Zhang, W. Zhang, G. Wu, D. Dai, B. Jiang, D. H.Zhang, X. Yang, Velocity map imaging study of the reaction dynamics of the H+CH4→H2+CH3 reaction: The isotope effects,J. Phys. Chem. A,118 (2014) 2426-2430.

119. C. Xie, J. Ma, X. Zhu, D. H. Zhang, D. R. Yarkony, D. Xie, H. Guo, Full-dimensional quantum state-to-State nonadiabatic dynamics for photodissociation of ammonia in its A-band, J. Phys. Chem. Lett.,5 (2014) 1055-1060.

120. J. Li, J. Chen, D. H. Zhang, H. Guo, Quantum and quasi-classical dynamics of the OH+CO→H+CO2 reaction on a new permutationally invariant neural network potential energy surface,J. Chem. Phys.,140 (2014) 044327-1~044327-6.

121. B. Fu,D. H. Zhang, J. M. Bowman , Quasiclassical trajectory studies of18O(3P)+NO2 isotope exchange and reaction to O2+NO on D0 and D1 potentials. J. Chem. Phys.,139 (2013) 024303-1~024303-7.

122. J. Chen,X. Xu,X. Xu, D. H. Zhang,An accurate global potential energy surface for the OH+CO→H+CO2 reaction using neural networks.J. Chem. Phys.,138 (2013) 221104-1~221104-4(JCP Communication).

123. B. Fu,D. H. Zhang,Mode specificity in the H+H2O→H2+OH reaction: A full-dimensional quantum dynamics study. J. Chem. Phys.,138 (2013) 184308-1~184308-7.

124. J. Chen,X. Xu ,X. Xu, D. H. Zhang,A global potential energy surface for the H2+OH↔H2O+H reaction using neural networks.J. Chem. Phys.,138 (2013) 154301-1~154301-8.

125. S. Liu, J. Chen, Z. Zhang, and D. H. Zhang, Communication: A six-dimensional state-to-state quantum dynamics study of the H+CH4→H2+CH3 reaction (J=0),138 (2013) 011101-1~011101-4(JCP Communication).

126. T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, D. H. Zhang, Dynamical resonances accessible only by reagent vibrational excitation in the F+HD→HF+D reaction,Science,342 (2013) 1499-1452.

127. D. Yu, S. Cong, D. H. Zhang, Z. Sun, Mapped finite element discrete variable representation, Chin. J. Chem. Phys.,26 (2013) 755-764.

128. S. P. Liu, P. Jin, D. H. Zhang, C. Hao, X. Yang, Reaction mechanism for methanol oxidation on Au(111): A density functional theory study, Appl. Surf. Sci.,265 (2013) 443-451.

129. X. Yang, D. H. Zhang, Probing quantum dynamics of elementary chemical reactions via accurate potential energy surfaces,Zeitschrift Fur Physikalische Chemie-international Journal of Research in Physical Chemistry & Chemical Physics,227 (2013) 1247-1265.

130. T. Liu, B. Fu, D. H. Zhang, Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface,J. Chem. Phys.,139 (2013) 184705-1~184705-8.

131. S. Liu, X. Xu, D. H. Zhang, A full-dimensional time-dependent wave packet study of the OH+CO→H+CO2 reaction, Theor. Chem. Acc.,131 (2012) 1068-1~1068-7.

132. B. Fu, Y. Zhou, D. H. Zhang, Shape resonance in the H+D2O→D+HOD reaction: a full-dimensional quantum dynamics study, Chem. Sci.,3 (2012) 270-274.

133. B. Fu, D. H. Zhang, Full-dimensional quantum dynamics study of the H+H2O and H+HOD exchange reactions, J. Phys. Chem. A,116 (2012) 820-825.

134. C. Wang, S. Liu, and D. H. Zhang, Effects of reagent vibrational excitation on the state-to-state quantum dynamics of the OH+CO→H+CO2 reaction in six dimensions (J=0),Chem. Phys. Lett.,537 (2012) 16-20.

135. B. Fu, D. H. Zhang, Full-dimensional quantum dynamics study of exchange processes for the D+H2O and D+HOD reactions,J. Chem. Phys.,136 (2012)194301-1~194301-7.

136. C. Wang, D. H. Zhang, Rex T. Skodje, A six-dimensional wave packet study of the vibrational overtone induced decomposition of hydrogen peroxide,J. Chem. Phys.,136 (2012) 164314-1~164314-5.

137. S. Liu, X. Xu, D. H. Zhang, Time-dependent wave packet theory for state-to-state differential cross sections of four-atom reactions in full dimensions: Application to the HD+OH→H2O+D reaction,J. Chem. Phys.,136 (2012) 144302-1~144302-10.

138. C. Wang, D. H. Zhang, Accuracy of low-level surface in hierarchical construction of potential energy surface, Chin. J. Chem. Phys.,25 (2012) 186-190.

139. Z. Sun, W. Yang, D. H. Zhang, Higher-order split operator schemes for solving the Schrodinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations, Phys. Chem. Chem. Phys.,14 (2012) 1827-1845.

140. S. Yu, K. Yuan, H. Song, X. Xu, D. Dai, D. H. Zhang, X. Yang, State-to-state differential cross-sections for the reactive scattering of H*(n) with o-D2, Chem. Sci.,3 (2012) 2839-2842.

141. X. Yang, T. K. Minton, D. H. ZhangRethinking chemical reactions at hyperthermal energies,Science,336 (2012) 1650-1651.

142. Z. Zhang, Y. Zhou,D. H. Zhang, Gabor Czako, Joel M. Bowman, Theoretical study of the validity of the Polanyi rules for the late-barrier Cl+CHD3 reaction, J. Phys. Chem. Lett.,3 (2012) 3416-3419.

143. T. J. Frankcombe, M. A. Collins, D. H. Zhang,Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity, J. Chem. Phys., 137 (2012) 144701-1~144701-10.

144. J. Jankunas, N. C.-M. Bartlett, R. N. Zare, L. Liu, X. Xu, D. H. Zhang,D+C(CH3)4→HD(v′, j′)+C(CH3)3CH2: possible concerted flow of vibration energy into translation,Mol. Phys.,110 (2012) 1713-1720.

145. S. P. Liu, P. Jin, C. Hao, D. H. Zhang, X. Yang, S. L. Chen, Reaction mechanism for CO oxidation on Cu(311): A density functional theory Study, Appl. Surf. Sci.,258 (2012) 3980-3985.

146. S. Liu, C. Xiao, T. Wang, J. Chen, T. Yang, X. Xu, D. H. Zhang, X. Yang, The dynamics of the D2+OH→HOD+D reaction: A combined theoretical and experimental study. Faraday Discussions,157 (2012) 1-11.

147. Z. Sun, D. H. Zhang, State-to-State reactive scattering by quantum wavepacket method, Prog. Chem.,24 (2012) 1153-1165.

148. Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo,D. H. Zhang,State-to-state quantum dynamics of O+O2 isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions, Proc. Nat. Acad. Sci. USA,107 (2010) 555-558.

149. Z. Sun,D. H. Zhang, M. Alexander,Time-dependent wavepacket investigation of state-to-state reactive scattering of Cl with para-H2 including the open-shell character of the Cl atom, J. Chem. Phys.,132 (2010) 034308-1~034308-14.

150. Z. Sun, H. Guo,D. H. Zhang,Extraction of state-to-state reactive scattering attributes from wave packet in reactact Jacobi coordinates, J. Chem. Phys.,132 (2010) 084112-1~084112-11.

151. W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang,D. H. Zhang,Transition-state spectroscopy of partial wave resonances in the F+HD reaction, Science,327 (2010) 1501-1502.

152. W. Zhang, Y. Zhou,G. Wu, Y. Lu, H. Pan, B. Fu, Q. Shuai, L. Liu, S. Liu, L. Zhang, B. Jiang, D. Dai,S.-Y. Lee, Z. Xie, B. J. Braams, J. M. Bowman, M. A. Collins,D. H. Zhang, X. Yang,Depression of reactivity by the collision energy in the single barrier H+CD4→HD+CD3 reaction, Proc. Nat. Acad. Sci. USA,107 (2010) 12782-12785.

153. J. Ma, S. Y. Lin, H. Guo, Z. Sun,D. H. Zhang, and D. Xie,State-to-state quantum dynamics of the O(3P)+OH→H+O2 reaction, J. Chem. Phys., 133 (2010) 054302-1~054302-9.

154. C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang, X. Yang, Experimental and theoretical differential cross sections for a four-atom reaction: HD+OH→H2O+D, Science,333 (2011) 440-442.

155. Y. Zhou, B. Fu, C. Wang, M. A. Collins, D. H. Zhang, Ab initio potential energy surface and quantum dynamics for the H+CH4→H2+CH3 reaction, J. Chem. Phys.,134 (2011) 064323-1~064323-8.

156. Z. Li, C. Xie, B. Jiang, D. Xie, L. Liu, Z. Sun, D. H. Zhang, H. Guo, Quantum and quasiclassical state-to-state dynamics of the NH+H reaction: Competition between abstraction and exchange channels, J. Chem. Phys.,134 (2011) 134303-1~134303-8.

157. Y. Zhou, C. Wang, D. H. Zhang, Effects of reagent vibrational excitation on the dynamics of the H+CHD3→H2+CD3reaction: A seven-dimensional time-dependent wave packet study, J. Chem. Phys.,135 (2011) 024313-1~024313-9.

158. S. Liu, X. Xu, D. H. Zhang, State-to-state quantum dynamics study of the OH+CO→H+CO2 reaction in full dimensions (J=0), J. Chem. Phys.,135 (2011) 141108-1~141108-4(JCP Communication).

159. L. Bonnet, J. E. Garcia; J. Corchado, S. Liu, D. H. Zhang, Classical versus quantum vibrational state distributions for the benchmark polyatomic reaction OH+D2: Checking the validity of the QCT method, Chem. Phys. Lett.,516 (2011) 137-140.

160. M. A. Collins, O. Godsi, S. Liu, D. H. Zhang, An ab initio quasi-diabatic potential energy matrix for OH(2Σ)+H2, J. Chem. Phys.,135 (2011) 234307-1~234307-14.

161. C. Xiahou, J. N. L. Connor, D. H. Zhang, Rainbows and glories in the angular scattering of the state-to-state F+H2 reaction at Etrans=0.04088 eV, Phys. Chem. Chem. Phys.,13 (2011) 12981-12997.

162. Z. Sun, X. Lin, S.-Y. Lee,D. H. Zhang,A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics: Application to the H+O2Reaction, J. Phys. Chem. A,113 (2009) 4145-4154.

163. Z. Sun, B. Fu,D. H. Zhang, S.-Y. Lee,Theoretical Investigation of the Direct Observation of Anharmonic Coupling in CDCl3 in the Time Domain with Femtosecond Stimulated Raman Scattering, J. Chem. Phys.,130 (2009) 044312-1~044312-8.

164. Z. Sun, S.-Y. Lee, H. Guo,D. H. Zhang,Comparison of Second-order Split Operator and Chebyshev Propagator in Wave Packet Based State-to-State Reactive Scattering Calculations, J. Chem. Phys., 130 (2009) 174102-1~174102-10.

165. D. H. Zhang, J. Shao, E. Pollak,Frozen Gaussian Series Representation of the Imaginary Time Propagator Theory and Numerical Tests, J. Chem. Phys.,131 (2009) 044116-1~044116-9.

166. Z. Li, D. Xie, Z. Sun,D. H. Zhang, S. Y. Lin, H. Guo,NH(X3Σ)+H/D(2S) → H(2S)+NH/HD exchange reactions: state-to-state quantum scattering and applicability of statistical model, J. Chem. Phys.,131 (2009) 124313-1~124313-7.

167. J. Liu, B. Fu, D. H. Zhang, Quantum wave packet study of the C(1D)+H2 reaction, Chem. Phys. Lett.,480 (2009) 46-48.

168. S. Y. Lin, Z. Sun, H. Guo,D. H. Zhang, P. Honvault, D. Xie, S.-Y. Lee,Fully Coriolis-coupled qunatum studies of the H+O2(vi=0-2, ji=0,1)→OH+O reaction on potential energy surface: Integral cross sections and rate constants, J. Phys. Chem. A,112 (2008) 602-611.

169. E. Pollak, J. Shao,D. H. Zhang,Effects of Initial Correlation of the Dynamics of Dissipative Systems, Phys. Rev. E,77 (2008) 0211071-0211079.

170. Z. Sun, J. Lu,D. H. Zhang, S.-Y. Lee,Quantum theory of femtosecond time-resolved stimulated Raman scattering, J. Chem. Phys.,128 (2008) 144114-1~144114-13.

171. X. Wang, W. Dong, M. Qiu, Z. Ren, L. Che, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu,D. H. Zhang,HF(v′=3) forward scattering in the F+H2 reaction: Shape resonance and slow-down mechanism, Proc. Nat. Acad. Sci. USA,105 (2008) 6227-6231.

172. Z. Ren, L. Che, M. Qiu, X. Wang, W. Dong, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu,D. H. Zhang,Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy, Proc. Nat. Acad. Sci. USA,105 (2008) 12662-12666.

173. X. Yang,D. H. Zhang,Dynamical Resonances in the Fluorine Atom Reaction with the Hydrogen Molecule, Accounts Chem. Res.,41 (2008) 981-989.

174. B. Fu, X. Xu,D. H. Zhang,A Hierarchical Construction Scheme for Accurate Potential Energy Surface Generation: An Application to the F+H2 reaction, J. Chem. Phys.,129 (2008) 011103-1~011103-4.

175. B. Fu, Y. Zhou,D. H. Zhang,A State-to-state Quantum Dynamical Study of the H+HBr Reaction, J. Theor. Comput. Chem.,7(2008) 777-791.

176. X. Wang, W. Dong, C. Xiao, L. Che, Z. Ren, D. Dai, X. Wang, P. Casavecchia, X. Yang, B. Jiang, D. Xie, Z. Sun, S.-Y. Lee,D. H. Zhang, H.-J. Werner, M. H. Alexander,The Extent of Non-Born-Oppenheimer Coupling in the Reaction of Cl(2P) with para-H2, Science,322 (2008) 573-576.

177. Z. Sun,D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S.-Y. Lee, S. Y. Lin, H. Guo,State-to-state Dynamics of the H+O2 Reaction, Evidence for Nonstatistical Behavior, J. Am. Chem. Soc.,130(2008) 14962-14963.

178. Z. Sun, Xue Q. Qiu, J. Lu, D. H. Zhang, S.-Y. Lee, Three-state model for femtosecond broadband stimulated Raman scattering.J. Raman Spectrosc.,39 (2008) 1568-1577.

179. L. Wang, M. Yang, A. R. W. McKeller,D. H. Zhang,Spectroscopy and potential energy surface of the H2-CO2 van der Waals complex: experimental and theoretical studies, Phys. Chem. Chem. Phys.,9 (2007) 131-137.

180. M. Yang, S.-Y. Lee,D. H. Zhang,A seven-dimensional quantum dynamics study of the O(3P)+CH4 reaction, J. Chem. Phys.,126 (2007) 064303-1~064303-7.

181. L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang,D. H. Zhang, X. Yang, L. Sheng, G. Li, H.-J. Werner, F. Lique, M. H. Alexander,Breakdown of the Born-Oppenheimer approximation in the F+o-D2→DF+D reaction, Science,317 (2007) 1061-1064.

182. Z. Sun, Z. Jin, J. Lu,D. H. Zhang, S.-Y. Lee,Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy, J. Chem. Phys.,126 (2007) 174104-1~174104-10.

183. B. Fu,D. H. Zhang,A time-dependent quantum dynamical study of the H+HBr reaction, J. Phys. Chem. A,111 (2007) 9516-9521.

184. Z. Sun, S.-Y. Lee,D. H. Zhang,Time-dependent quantum wave packet study of the F+HCl and F+DCl reaction, Chin. J. Chem. Phys.,20 (2007) 365-371.

185. L. Zhang, Y. Lu, S.-Y. Lee,D. H. Zhang,A transition State Wave Packet Study of the H+CH4 Reaction, J. Chem. Phys.,127 (2007) 234313-1~234313-7.

186. X. Yang, D. Xie, D. H. Zhang, Dynamical resonance in F+H2 chemical reaction and rotational excitation effect, Chinese Science Bulletion,52 (2007) 1009-1012.

187. Y. Lu, S.-Y. Lee,D. H. Zhang,A full dimensional time-dependent wave packet study for the H4 four-center, collision induced dissociation, and single exchange reactions: Reaction probabilities J=0, J. Chem. Phys.,124 (2006) 011101-1~011101-4 (JCP communication).

188. K. Yuan, Y. Cheng, X. Liu, S. Harich, X. Yang,D. H. Zhang,Experimental and Quantum Dynamical Study on an Asymmetric Insertion Reaction: State-to-State Dynamics of O(1D)+HD(1Sg+, v′=0, j'=0)→OH(2P,v′′,N′′)+D(2S), Phys. Rev. Lett.,96 (2006) 103202-1~103202-4.

189. M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun,D. H. Zhang,Observation of Feshbach resonances in the F+H2→HF+H reaction, Science,311 (2006) 1440-1443.

190. C. Xu, D. Xie,D. H. Zhang,A globalab initiopotential energy surface for F+H2→HF+H, Chin. J. Chem. Phys.,19 (2006) 96-98.

191. D. H. Zhang,State-to-state quantum reactive scattering for four-atom chemical reactions: Differential cross section for the H+H2O→H2+OH abstraction reaction, J. Chem. Phys.,125 (2006) 133102-1~133102-4.

192. Y. Zhou, D. Xie,D. H. Zhang,A three-dimensionalab initiopotential energy surface and predicted infrared spectra for the He-N2, J. Chem. Phys.,124 (2006) 144317-1~144317-7.

193. L. L. Zhang, S.-Y. Lee,D. H. Zhang,A test of continuous configuration time-dependent self-consistent field (CC-TDSCF) method on the H+CH4 reaction, J. Phys. Chem. A,110 (2006) 5513-5519.

194. Z. Ke, W. Lai, D. Xie,D. H. Zhang,First-Principles Potential Energy Surface and Vibrational State of H/Rh(111) at 0.25 and 1 Monolayer Coverages, J. Appl. Phys.,99 (2006) 113704-1~113704-2.

195. Z. Ren, Li Che, M. Qiu, X. Wang, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie,D. H. Zhang,Probing Feshbach resonances in F+H2(j=1)→HF+H: Dynamical effect of single quantum H2-rotation, J. Chem. Phys.,125 (2006) 151102-1~151102-4 (JCP Communication).

196. X. Yang, D. Xie, D. H. Zhang, Feshbach resonances in the F+H2 chemical reaction,物理(physics),35 (2006) 543-545.

197. Y. Lu,D. H. Zhang, S.-Y. Lee,A time-dependent wave packet study of the H4 four-center reaction, Chem. Phys.,308 (2005) 217-224.

198. S. Yoon, D. McCamant, P. Kukura, R. A. Mathies,D. H. Zhang, S.-Y. Lee,Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay, J. Chem. Phys.,122 (2005) 024505-1~024505-9.

199. D. H. Zhang, W. Bao, M. Yang, S.-Y. Lee,Continuous configuration time-dependent self-consistent field method for polyatomic quantum dynamical problems, J. Chem. Phys.,122 (2005) 091101-1~091101-4.

200. C. Xu, D. Xie,D. H. Zhang, S. Y. Lin, H. Guo,A newab initiopotential energy surface of HO2(X2A′′)and quantum studies of HO2 vibrational spectrum and rate constants for the H+O2↔O+OH reactions, J. Chem. Phys.,122 (2005) 244305-1~244305-8.

201. C. R. Evenhuis, X. Lin,D. H. Zhang, D. Yarkony, M. A. Collins,Interpolation of diabatic potential energy surfaces: Quantum dynamics onab initiosurfaces, J. Chem. Phys.,123 (2005) 134110-1~134110-12.

202. W. Lai, D. Xie,D. H. Zhang,First-principles study of adsorption of methyl, coadsorption of methyl and hydrogen, and methane dissociation on Ni(100), Surf. Sci.,594 (2005) 83-92.

203. D. S. Wang,X. Yang,K. L. Han, D. H. Zhang, The failure of CS approximation in quantum reaction scattering with double deep well: Time-dependent calculation for O+NH reaction, J. Theor. Comput. Chem., 4(2005) 857-865.

204. S.-Y. Lee,D. H. Zhang, D. W. McCamant, P. Kukura, R. A. Mathies,Theory of femtosecond stimulated Raman spectroscopy, J. Chem. Phys.,121 (2004) 3632-3642.

205. W. Lai, D. Xie, J. Yang,D. H. Zhang,A first-principles potential energy surface and vibrational states for hydrogen on Cu(100), J. Chem. Phys.,121 (2004) 7434-7439.

206. D. H. Zhang, Eli Pollak,Coherent classical path description of deep tunneling,Phys. Rev. Lett.,93 (2004) 140401-1~140404-4.

207. M. Brouard, I. Burak, D. Minayev, P. O’Keeffe, C. Vallance, F. J. Aoiz, L. Banares, J. F. Castillo,D. H. Zhang, D. Xie, M. Yang, S.-Y. Lee, M. A. Collins, Cross-section for the H+H2O abstraction reaction: experiment and theory, Phys. Rev. Lett.,90 (2003) 093201-093204.

208. K.-L. Yeh, D. Xie,D. H. Zhang, S.-Y. Lee, R. Schinke,Time-dependent wave packet study of the O+O2(v=0, j=0) exchange reaction, J. Phys. Chem. A,107 (2003) 7215-7219.

209. L. Yao, K. L. Han, H. S. Song, D. H. Zhang, Theoretical study of the X+YCl (X, Y=H, D) reactions, J. Chin. Chem. Soc., 50 (2003) 565-574.

210. L. Yao, K. L. Han, H. S. Song, D. H. Zhang, Close-coupling time-dependent quantum dynamics study of the H+HCl reaction,J. Phys. Chem. A,107(2003) 2781-2786.

211. D. H. Zhang, M. Yang, S.-Y. Lee,Quantum dynamics of the D2+OH reaction,J. Chem. Phys.,116 (2002) 2388-2394.

212. D. H. Zhang, M. Yang, M. A. Collins, S.-Y. Lee,Probing the transition state via photoelectron and photodetachment spectroscopy of H3O,Proc. Nat. Acad. Sci. USA,99 (2002) 11579-11582.

213. D. H. Zhang, M. Yang, S.-Y. Lee,Breakdown of the spectator model for the OH bonds in studying the H+H2O reaction,Phys. Rev. Lett.,89 (2002) 103201-103204.

214. M. Yang,D. H. Zhang, S.-Y. Lee,A seven-dimensional quantum study of the H+CH4 reaction,J. Chem. Phys.,117 (2002) 9539-9542 (JCPCommunication).

215. D. H. Zhang, M. Yang, S.-Y. Lee,Accuracy of the centrifugal sudden approximation in the H+H2O reaction and accurate integral cross sections for the H+H2O→H2+OH abstraction reaction,J. Chem. Phys.,117 (2002) 10067-10072.

216. M. Brouard, I. Burak, D. Minayev, P. O’Keeffe, C. Vallance, F. J. Aoiz, L. Banares, J. F. Castillo,D. H. Zhang, M. A. Collins,The dynamics of the H+D2O→OD+HD reaction at 2.5 eV,J. Chem. Phys.,118 (2002) 1162-1174.

217. D. H. Zhang, D. Xie, M. Yang, S.-Y. Lee,State-to-state integral cross section for the H+H2O→H2+OH abstraction reaction,Phys. Rev. Lett.,89 (2002) 283203-283206.

218. M. Yang,D. H. Zhang, M. A. Collins, S.-Y. Lee,Quantum dynamics on new potential surfaces for the H2+OH→H2O+H reaction,J. Chem. Phys.,114 (2001) 4759-4762 (JCPCommunication).

219. Y. M. Li, M. L. Wang, J. Z. H. Zhang,D. H. Zhang,Semirigid vibrating rotor target calculation for reaction H+HOD→H2+OH, HD+OH,J. Chem. Phys.,114 (2001) 7013-7017.

220. D. H. Zhang, M. Yang, S.-Y. Lee,Branching ratio in the HD+OH reaction: A full-dimensional quantum dynamics study on a new ab initio potential energy surface,J. Chem. Phys.,114 (2001) 8733-8736 (JCPCommunication).

221. M. Yang,D. H. Zhang, M. A. Collins, S.-Y. Lee,Ab initio potential energy surfaces for the reactions H2+OH→H2O+H,J. Chem. Phys.,115 (2001) 174-178.

222. D. H. Zhang, S.-Y. Lee,Effects of reagent rotation and the accuracy of the centrifugal sudden approximation in the H2+CN reaction,J. Chem. Phys.,112 (2000) 203-211.

223. D. H. Zhang, J. Z. H. Zhang,The semirigid vibrating rotor target model for atom-polyatom reaction: Application to H+H2O→H2+OH,J. Chem. Phys.,112 (2000) 585-591.

224. J. Z. H. Zhang,D. H. Zhang,Quantum wavepacket approach to chemical reaction dynamics, Perspective on “Dynamics of the collinear H+H2 reaction. I. Probability density and flux”,Theor. Chem. Acc.,103 (2000) 300-305.

225. D. H. Zhang, S.-Y. Lee, M. Baer,Quantum mechanical integral cross sections and rate constant for the F+HD reaction,J. Chem. Phys.,112 (2000) 9802-9809.

226. R. P. Bettens, M. A. Collins,D. H. Zhang,Ab initio potential energy surface for the reactions between H2O and H,J. Chem. Phys.,112 (2000) 10162-10172.

227. T. Peng,D. H. Zhang, D. Y. Wang, Y. M. Li, J. Z. H. Zhang,Dynasol: A visual quantum dynamics package,Comp. Phys. Comm.,128 (2000) 492–495.

228. M. L. Wang, Y. Li, J. Z. H. Zhang,D. H. Zhang,Application of semirigid vibrating rotor target model to reaction of H+CH4→CH3+H2,J. Chem. Phys.,113 (2000) 1802-1806.

229. D. H. Zhang, M. A. Collins, S.-Y. Lee,First-Principles Theory for the H+H2O, D2O Reactions,Science,290 (2000) 961-963.

230. D. H. Zhang, S.-Y. Lee,Fully converged integral cross sections of diatom-diatom reactions and the accuracy of the centrifugal sudden approximation in the H2+OH reaction,J. Chem. Phys.,110 (1999) 4435-4444.

231. D. H. Zhang, J. Z. H. Zhang,A uniform J-shifting approach for calculating reaction rate constant,J. Chem. Phys.,110 (1999) 7622-7626.

232. D. H. Zhang, D. Y. Wang, T. Peng, J. Z. H. Zhang,Ab initio SOFA quantum dynamics for chemical reaction,Chem. Phys. Lett.,307 (1999) 453-462.

233. D. H. Zhang, J. C. Light, S.-Y. Lee,Transition state wave packet study of hydrogen diffusion on Cu(100) surface,J. Chem. Phys., 111 (1999) 5741-5753.

234. M. A. Collins,D. H. Zhang,Application of interpolated potential energy surfaces to quantum reactive scattering, J. Chem. Phys.,111 (1999) 9924-9931.

235. W. Zhu, J. Z. H. Zhang, Y. C. Zhang, Y. B. Zhang, L. X. Zhan, S. L. Zhang,D. H. Zhang,Quantum dynamics study of H2+CN→HCN+H reaction in full dimensions,J. Chem. Phys.,189 (1998) 3509-3516.

236. D. H. Zhang, J. C. Light, S.-Y. Lee,Quantum rate constant for the H2+OH reaction with the centrifugal sudden approximation,J. Chem. Phys.,109 (1998) 79-86.

237. W. Zhu, J. Z. H. Zhang,D. H. Zhang,Full dimension quantum dynamics calculation for D2+CN reaction,Chem. Phys. Lett.,292 (1998) 46-50.

238. R. B. Lehoucq, S. K. Gray,D. H. Zhang, J. C. Light,Vibrational eigenstates of four-atom molecules: A parallel strategy employing the implicitly restarted Lanczos method,Comput. Phys. Comm.,109 (1998) 15-26.

239. J. C. Light,D. H. Zhang,The Quantum Transition State Wave packet Method,Faraday Discuss, 110 (1998) 105-118.

240. D. H. Zhang, S.-Y. Lee,Effects of reagent rotational excitation on the dynamics of H2+OH→H2O+H,J. Chem. Phys.,109 (1998) 2708-2716.

241. Y. C. Zhang, Y. B. Zhang, L. Zhan, S. Zhang, D. H. Zhang, J. Z. H. Zhang, Time-dependent quantum dynamics study of reactive scattering of the H+O2 involving long-lived resonances, Chin. Phys. Lett., 15 (1998) 16-18.

242. D. H. Zhang, J. C. Light, The cumulative reaction probability for the H2+OH reaction, J. Chem. Phys., 106 (1997) 551-563.

243. H. Tang, D. H. Zhang, Studies on determination of degree of coupling of Fermi resonance, Chem. Phys. Lett., 265 (1997) 84-90.

244. D. H. Zhang, J. C. Light, Mode specificity in the H + HOD reaction: a full dimensional quantum study, J. Chem. Soc., Faraday Trans., 93 (1997) 691-697.

245. T. Peng, D. H. Zhang, J. Z. H. Zhang, R. Schinke, Reaction of O(1D)+H2→HO+H, A three-dimensional quantum dynamics study, Chem. Phys. Lett., 248 (1996) 37-42.

246. D. H. Zhang, J. C. Light, A six dimensional quantum study for atom-triatom reactions: The H+H2O→H2+OH reaction, J. Chem. Phys., 104 (1996) 4544-4553.

247. D. H. Zhang, J. C. Light, Cumulative reaction probability via transition state wave packets, J. Chem. Phys., 104 (1996) 6184-6191.

248. D. H. Zhang, J. C. Light, Quantum state-to-state reaction probabilities for the H+H2O→H2+OH reaction in six dimensions, J. Chem. Phys., 105 (1996) 1291-1294 (JCP Communication).

249. W. Zhu, J. Dai, J. H. Z. Zhang, D. H. Zhang, State-to-state time-dependent quantum calculation for reaction H2+OH→H+H2O in six dimensions, J. Chem. Phys., 105 (1996) 4881-4884 (JCP Communication).

250. D. H. Zhang, Q. Wu, J. Z. H. Zhang, A time-dependent approach to flux calculation in molecular photofragmentation: Vibrational predissociation of HF-DF, J. Chem. Phys., 102 (1995) 124-132.

251. D. H. Zhang, J. Z. H. Zhang, Accurate time-dependent quantum scattering calculation for diatom-diatom reaction with branching: HD+OH→H+DOH, D+HOH, Chem. Phys. Lett., 232 (1995) 370-373.

252. D. H. Zhang, Q. Wu, J. Z. H. Zhang, M. Dirke, Z. Bačić, Exact full-dimensional bound state studies for (HF)2, (DF)2, and HFDF, J. Chem. Phys., 102 (1995) 2315-2325.

253. M. Dirke, Z. Bačić, D. H. Zhang, J. Z. H. Zhang Vibrational predissociation of HF dimer in vHF =1: influence of initially excited intermolecular vibrations on the fragmentation dynamics, J. Chem. Phys., 102 (1995) 4382-4389.

254. D. H. Zhang, J. Z. H. Zhang, Y. Zhang, D. Wang, Q. Zhang, Quantum dynamics study of the reaction HD+OH→H+DOH, D+HOH, J. Chem. Phys., 102 (1995) 7400-7408.

255. Q. Wu, D. H. Zhang, J. Z. H. Zhang, 6D quantum calculation of energy levels for HF stretching excited (HF)2, J. Chem. Phys., 103 (1995) 2548-2554.

256. D. H. Zhang, J. Z. H. Zhang, Quantum calculations of reaction probabilities for HO+CO→H+CO2 and bound states of HOCO, J. Chem. Phys., 103 (1995) 6512-6519.

257. Y. Zhang, D. Zhang, W. Li, Q. Zhang, D. Wang, D. H. Zhang, J. Z. H. Zhang, Quantum dynamics study for D2+OH reaction, J. Phys. Chem., 99 (1995) 16824-16828.

258. D. H. Zhang, J. C. Light, Potential inversion via variational generalized inverse, J. Chem. Phys., 103 (1995) 9713-9720.

259. D. H. Zhang, J. Z. H. Zhang, Accurate quantum calculation for H2+OH→H2O+H: reaction probabilities, cross sections and rate constants, J. Chem. Phys., 100 (1994) 2697-2706.

260. Z. T. Cai, D. H. Zhang, J. Z. H. Zhang, Quantum dynamical studies for photodissociation of H2O2 at 248 and 266 nm, J. Chem. Phys., 100 (1994) 5631-5638.

261. D. H. Zhang, J. Z. H. Zhang, Full-dimensional time-dependent treatment for diatom-diatom reactions: the H2+OH reaction, J. Chem. Phys., 101 (1994) 1146-1156.

262. D. H. Zhang, J. Z. H. Zhang, Quantum reactive scattering with a deep well: Time-dependent calculation for H+O2 reaction and bound state characterization for HO2, J. Chem. Phys., 101 (1994) 3671-3678.

263. D. H. Zhang, J. Z. H. Zhang,Quantum mechanical calculation for photodissociation of hydrogen peroxide,J. Chem. Phys.,98 (1993) 6276-6283.

264. D. H. Zhang, J. Z. H. Zhang,Total and partial decay widths in vibrational predissociation of HF dimer,J. Chem. Phys., 98(1993) 5978-5981 (JCPCommunication).

265. D. H. Zhang, J. Z. H. Zhang,Accurate quantum calculation for the benchmark reaction H2+OH→H2O+H in five-dimensional space: Reaction probabilities for J=0,J. Chem. Phys.,99 (1993) 5615-5618 (JCPCommunication).

266. D. H. Zhang, J. Z. H. Zhang,Photofragmentation of HF dimer: Quantum dynamics studies on ab initio potential energy surfaces,J. Chem. Phys.,99(1993) 6624-6633.

267. D. H. Zhang, J. Z. H. Zhang, An efficient time-dependent golden rule treatment for three-dimensional vibrational predissociation of HeI2, J. Phys. Chem., 96 (1992) 1575-1578.

268. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, A time-dependent golden rule wave packet calculation for vibrational predissociation of D2HF, J. Chem. Phys., 97 (1992) 927-934.

269. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, Mode-specific decay widths in vibrational predissociation of D2HF, Chem. Phys. Lett., 194 (1992) 313-317.

270. D. H. Zhang, J. Z. H. Zhang, Zlatko Bačić, A time-dependent calculation of vibrational predissociation of H2HF, J. Chem. Phys., 97 (1992) 3149-3156.

271. D. H. Zhang, J. Z. H. Zhang, Vibrational predissociation of HD-HF, Chem. Phys. Lett., 199 (1992) 187-190.

272. D. H. Zhang, O. A. Sharafeddin, J. Z. H. Zhang, Product state distribution in time-dependent quantum wave packet calculation with an optical potential,Chem. Phys.,167(1992) 137-148.

273. D. H. Zhang, J. Z. H. Zhang, Time-dependent treatment of vibrational predissociation within golden rule approximation, J. Chem. Phys., 95 (1991) 6449-6455.



Copyright 2022. All Rights Reserved. TEL: 0411-84379369 E-mail:slchen@dicp.ac.cn

STATE KEY LABORATORY OF MOLECULAR REACTION DYNAMICS, DALIAN INSTITUTE OF CHEMICAL PHYSICS, CAS